Development and optimization of metoprolol succinate gastroretentive drug delivery system.
نویسندگان
چکیده
Metoprolol succinate (MS) gastroretentive (GR) controlled release system was formulated to increase gastric residence time leading to improved drug bioavailability. Box-Behnken model was followed using novel combinations of sodium alginate (SA), sodium carboxymethylcellulose (NaCMC), magnesium alumino metasilicate (MAS) as independent variables. Floating lag time (Flag), t25, t50, t75, diffusion exponent as dependent variables revealed that the amount of SA, NaCMC and MAS have a significant effect (p < 0.05) on t25, t50, t75 and Flag. MSGR tablets were prepared and evaluated for mass, thickness, hardness, friability, drug content and floating property. Tablets were studied for dissolution for 24 h and exhibited controlled release of MS with floating for 16 h. The release profile of the optimized batch MS01 fitted first-order kinetics (R2 = 0.9868, n = 0.543), indicating non-Fickian diffusion or anomalous transport by diffusion and swelling.
منابع مشابه
Controlled-Release Low Density Effervescent Floating Matrix Tablets of Risperidone: Development, Optimization, in vitro-in vivo Evaluation in Healthy Human Volunteers and Determination of Dissolution Equivalency
The main objective of the present study was to formulate gastroretentive effervescent sustained release drug delivery systems of risperidone floating tablets with the help of Methocel® K15, Ethocel® standard 7FP premium, Eudragit ® RS100 sustained release polymers to improve its safety profile, bioavailability and patient compliance. Risperidone floating tablets were formulated by wet granulati...
متن کاملFreeze-dried k-carrageenan/chitosan polyelectrolyte complex-based insert: a novel intranasal delivery system for sumatriptan succinate
Intranasal route, ensuring suitable bioavailability of medicines under circumvention of the gastrointestinal degradation and hepatic first-pass elimination, has been a popular choice for drug delivery. Among nasal dosage forms, mucoadhesive solid inserts have been shown to resist mucociliary clearance and provide a prolonged nasal residence time. Hence, the purpose of this study was the prepara...
متن کاملDevelopment of Bioadhesive Chitosan Superporous Hydrogel Composite Particles Based Intestinal Drug Delivery System
Bioadhesive superporous hydrogel composite (SPHC) particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 3(2) full factorial design was applied to optimize the concentration of chitosan and HPMC. T...
متن کاملFreeze-dried k-carrageenan/chitosan polyelectrolyte complex-based insert: a novel intranasal delivery system for sumatriptan succinate
Intranasal route, ensuring suitable bioavailability of medicines under circumvention of the gastrointestinal degradation and hepatic first-pass elimination, has been a popular choice for drug delivery. Among nasal dosage forms, mucoadhesive solid inserts have been shown to resist mucociliary clearance and provide a prolonged nasal residence time. Hence, the purpose of this study was the prepara...
متن کاملFormulation and Evaluation of Controlled Porosity Osmotic Drug Delivery System of Metoprolol Succinate
Controlled porosity osmotic tablet of metoprolol succinate prepared and evaluated in this study. Metoprolol succinate is very high soluble drug, so complete drug release obtained very fast. It is difficult to formulate osmotic tablet of Metoprolol succinate which gives drug release up to 24 hr at zero order. To get desired dissolution profile various formulation parameters like osmogen concentr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta pharmaceutica
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2010